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ABSTRACT

The in-line force and the resulting drag and inertia

coefficients for smooth and rough circular cylinders

immersed in a sinusoidally oscillating flow at low Keulegan-

Carpenter numbers (K) have been determined experimentally

and compared with those obtained theoretically by Stokes and

Wang. In addition, flow visualization experiments were

carried out with oscillating cylinders in a water table and

the stability of the flow was investigated. The results

have shown that for very low values of K, the flow about the

. cylinder is laminar, attached, and stable and the drag

coefficient is nearly identical to that predicted theore-

tically. At a critical K, the flow becomes unstable to

Taylor-Gortler vortices and the drag coefficient jumps to a

higher value. Subsequently, the flow separates, becomes

turbulent and results in a minimum drag coefficient. The

subsequent increases in drag are attributed to vortex

shedding. The inertia coefficient agrees with that obtained

theoretically in the range where the flow in laminar.
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TABLE OF SYMBOLS AND ABBREVIATIONS

A Amplitude of flow oscillation

an  Fourier coefficient

Ca  Added mass coefficient

Cd Drag coefficient

Cf(rms) RMS value of calculated force

Cm Inertia coefficient

D Cylinder diameter

F In-line force

Fm Measured in-line force

K Keulegan-Carpenter number, K = UmT/D = 2w A/D

Kcr Critical Keulegan-Carpenter number

k Mean sand-roughness height

k/D Relative roughness

L Cylinder length

p Pressure

Re Reynolds number, Re = UmD/v

T Period of flow oscillation

t Time

U Instantaneous velocity

Um  Maximum velocity in a cycle

u x-component of velocity

v y-component of velocity
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T To c7 oi c i axis

x Horizontal component of coordinate axis

y Vertical component of coordinate axis

B Frequency parameter, 8 = Re/K = D2/vT

e Angle, e = 2wt/T

Kinematic viscosity of water

P Density of water

Circular frequency
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I. INTRODUCTION

The determination of the forces acting on bluff bodies

immersed in time dependent flows has been of special

interest in many branches of engineering. Special attention

has been devoted to the wave forces on offshore structures.

The extensive laboratory and field studies of the past

decade have yielded extremely interesting results regarding

the in-line and transverse forces acting on smooth and rough

cylinders (Ref. 1]. However useful these investigations

were, they were based on the use of an empirical equation

(Morison's) (Ref. 2] and on the force coefficients obtained

either through the Fourier Analysis or the method of least

squares. In recent years, it became quite clear that

further progress toward the understanding of the physics of

the phenomenon must be based on analytical studies and the

understanding of the kinematics of the flow.

A theoretical analysis of the separated flow about a

circular cylinder is an extremely difficult problem.

Efforts in that direction through the use of the discrete

vortex models did not lead to meaningful conclusions. It

7K became clear that the key towards the understanding of flow

separation, transition and vortex formation is in the very

low Keulegan-Carpenter number (K) regime. It is because of

10



this reason that experiments were carried out in an

,4 oscillating water tunnel for force measurements and with an

oscillating cylinder in a water table for flow visualiza-

tion. The investigation resulted in findings beyond the

original objectives. In the following, first the

*theoretical analysis and then the experimental apparatus and

measurements will be presented. These will be followed by a

discussion of the results and conclusions.
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II. ANALYSIS

A. INTRODUCTION

This section will present a condensed review of the

theoretical studies regarding the oscillating flow about

bluff bodies. First the flow about an infinite flat plate

undergoing sinusoidal oscillations will be briefly

%%' discussed. Then Schlichting's [Refs. 3 and 4], Stokes'

[Ref. 5 and 6], and finally Wang's (Ref. 7] solution of a

sinusoidally oscillating cylinder in a still fluid will be

discussed. It should be emphasized that the case of a

cylinder oscillating in a fluid otherwise at rest is

identical to that of a fluid oscillating about a cylinder.

The only difference comes from the 'buoyant' force acting on

the cylinder in the direction of flow due to the pressure

gradient needed to accelerate the flow, i.e., the inertia

coefficient for the case of the oscillating flow is equal to

(1 + Ca) where Ca is the added mass coefficient for the

oscillating cylinder, i.e., Cm = 1 + Ca•

B. STOKES' OSCILLATING PLATE PROBLEM

The flow about an infinite flat plate undergoing

sinusoidal oscillations was treated by Stokes assuming that

the flow is laminar and stable. With respect to the

coordinate axis in Figure 1, the Navier-Stokes equations and

, the boundary conditions reduce to:

12
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- a (1)

a t 3y2

initial condition: u(y,0) = 0

boundary conditions: u(0,t) = Uo cos wt

u(e,t) = 0

The solution of Eq. (1) via the separation of variables

is given by:

_, u(y,t) = Uo exp(- ) cos(t - ) 2)

Letting r- = y , one has

u(y,t) = U0 exp(-n) cos(.it - n) (3)

"The velocity profile u(y,t) has the form of a damped

harmonic oscillation, the amplitude of which is U0 exp(-y )

in which a fluid layer at a distance y has a phase lag with

respect to the motion of the wall [Ref. 3]." Figure 2 shows

the velocity distribution in the neighborhood of the

oscillating wall.

C. SCHLICHTING'S OSCILLATING CYLINDER PROBLEM

Schlichting (Refs. 3 and 4] considered the case of a

cylinder oscillating at high frequency and small amplitude

13
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in a fluid otherwise at rest and used the boundary layer

approximation to the Navier-Stokes equations. This led to:

+ u + v 2- i-- + v (

a- t3x +  v y P ax ay2

which reduces to:

1 au + u 3u
- ax at ax (5)

for the outer flow, i.e., at the edge of the boundary layer.

Combining Eqs. (4) and (5), one has:

3u 1  a 2Ul 3au U + U (6)
ay 2  at ax

This equation may be solved to the desired degree of

approximation. The first order (linear) approximation

yields:

2a uI  uI  aUI- u1  -2 (7)

3y2

For the approximation to be valid, the convective

acceleration must be considered smaller than the local

acceleration, i.e.,

14
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U aU << au (8)ax 3E

Using the order of magnitude arguments, one has:

2
aU Um au

-ti - aU = Um'ax D at

It is seen that for the analysis to be valid, one must have
T << 1 or A << 1 where U is the maximum velocity in a
Dmf

cycle; T, the period of oscillation; D, the diameter of the

cylinder; and A, the amplitude of oscillation.

The solution of Eq. (7) with the following boundary

conditions:

at y = 0, u = 0 (no slip condition)

at y = -, u = U

yields the following stream function:

~, 1(X~yYt) = Uo(x) f(n)e i t (9)

from which one obtains the velocity as:

u(x,y,t) = Uo(x)[cos(ut) - exp(-n/2)cos(wt -n/4T)]

(10)

15



which is seen to be identical to Stokes' solution for the

oscillating infinite flat plate.

A second approximation may be applied to Eq. (4) by

retaining the convective terms. Then one has:

au 2 = 2 2 U au v a 1Iu)

7t 3y2  ( 11

,'- -The stream function needed for the solution of the above

equation is given by:

dUo 1 2i ut;(xy-t. = I { (ri)e + f('1)} (12)
2 (x y t)  U0 (x) dx w 2p f2s

where f2p represents the periodic motion and f2s' the steady

state. The use of the following boundary conditions on f2p:

at n = 0 u == 0==> f = f' = 0

atn -- f, 0

and on f 2s:

at n =0 u = v ==> f = f' =0

at n = f' 0

.,

16
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leads to an important result. The boundary condition at

n - -, f' = 0, for the steady state component cannot be met.

Instead a finite value is obtained:

,:-:"3 Uo  X
u2(x, ) = - 0 (13)

Periodically oscillating flow about a circular cylinder

produces a steady streaming motion outside the boundary

layer. In Figure 3 the streamlines about an oscillating

cylinder in a still fluid are shown. This is for the case

for a small Reynolds number with K -> 0 which leads to four

recirculation cells and four stagnatiton points around the

cylinder.

The force acting on the cylinder has not been evaluated

by Schlichting.

D. STOKES' OSCILLATING CYLINDER PROBLEM

-.. Stokes, as one of his considerable achievements,

investigated the flow about oscillating cylinders and

spheres without resort to the boundary layer approximation

(Refs. 5 and 6]. His solutions are then valid at an as yet

unspecified small Reynolds number. His solution yields the

following force per unit length of a cylinder:

F _42 1 1 2F 4 1m+D cos Ut- (1 + )sin (t
• :.. .p U m 2D K 14 ) ~

17
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which can be obtained by use of the asymptotic expansion of

the Bessel function for large values of s, (8 - D2/vT).

Stokes' solution will be taken up again later following the

discussion of a more recent solution.

E. WANG'S OSCILLATING CYLINDER PROBLEM

Wafg [Ref. 7] in 1968, investigated the flow about an

oscillating circular cylinder by taking into consideration

the effects of curvature which were neglected in

Schlichting's analysis. Using inner and outer expansion and

the boundary layer approximation, Wang obtained the

following force expression for the oscillating cylinder,

valid to the order of B-3/2:

F 4,2.1 + 1I 1_4 1
F -s4r(- 1 - )coswt - -(l + -+ 1)sinwt

T-PU 2D K To~ 4irB/; K~ B7

+ higher order terms (15)

A comparison of Eqs. (14) and (15) shows that the first

two terms in the corresponding parentheses are identical and

Wang's solution differs from that of Stokes only in the
.4.

third term. It is noted that both solutions are valid only

for large B and thus they yield virtually identical results,

since the third term in each parenthesis in Eq. (15) is

negligible.

18



F. MORISON'S EQUATION AND THE STOKES AND WANG SOLUTIONS

* The normalized form of the Morison equation, with

U Um cos ut, [Ref. 2] may be written as:

F w2

1 2  = Cd jcos 6 1 cos 0 - I Cm sin o (16)P.Um D

which was developed for the determination of wave forces on

offshore structures and discussed in the literature in great

detail during the past 30 years [Ref. 1].

The force expression obtained by Stokes and Wang may be

expressed in the form of Morison's equation by linearizing

cos 6j cos 0.

From [Ref. 8], writing:

/2

Icos 81 Cos = Jo cos @I cos e cos ne do (17)
n=O /2lr

0 cos2

Jo C052 no do

=a + a cos 0 + a2 cos 20 +

with: an =0 n even

n+ 1

= (-1) 2 8 nodd

an 2-4)i
n(n 4)i

8
a, 31

19



using a first term approximation:

Icos 91 cos a = 2 cos 0 (18)

3v

Then Eq. (15) may be reduced to:

1 1 1

Cm 2 + 4 + ;0 (19)

C-v3 1 1 (20)
d NK74w F)d :2K vS /i-

for the case of the oscillating flow about a cylinder

" (note: Cm = 1 + Ca)* These drag and inertia coefficients

...'.will be compared with those obtained experimentally with

smooth and rough cylinders.

m4
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III. EXPERIMENTAL EQUIPMENT AND PROCEDURES

Force measurements were carried out in a large U-shaped

water tunnel. It is 34 feet long, 25 feet high, and has a

working cross section of 3 feet by 4.66 feet. Additional

details of the design and operation of the water tunnel are

given in [Refs. 9 and 10]. The flow in the tunnel is

oscillated by means of a 1 HP fan and a butterfly valve

*; system. The frequency of oscillation of the butterfly valve

is adjusted by means of an electronic feedback control

system, so as to oscillate the flow at its natural

frequency. The amplitude of oscillations can be maintained

at the desired level by opening or closing a gate at the

exit of the fan.

The test cylinders, approximately 3 feet in length, are

mounted horizontally and supported at both ends by force

transducers. These transducers can measure both the in-line

and transverse forces. The electronic signals from the

force transducers and from the amplitude gages are fed to

two amplifiers and then digitized by means of an A/D

converter. The digitized signal is then analyzed by means

of a computer.

The experiments for each cylinder were repeated at least

twice to ascertain the repeatability of the data.

21



Two smooth cylinders with B = 1035 and B = 1380 and one

rough cylinder with B = 1800 were tested.

Flow visualization experiments were carried out in a 4

foot by 8 foot water table. Circular cylinders of suitable

diameter were oscillated by means of a slider-crank

mechanism and a variable speed motor. The flow pattern

about the cylinder was made visible by means of an electro-

chemical technique [Ref. 11]. For this purpose a solder

wire was inbedded along the cylinder length. Voltage of

*- 5 - 10 volts were applied between the solder and an

electrode (placed away from the cylinder) to generate a

metallic white smoke from the solder. A small amount of

NaCl was added to the water to increase conductivity.

Careful adjustment of the applied voltage and the repeated

cleaning of the solder and cylinder surfaces were necessary

for the successful visualization of the resulting flow

patterns.

-q
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IV. PRESENTATION AND DISCUSSION OF RESULTS

The drag and inertia coefficients were evaluated through

. the use of Fourier averaging (Ref. 1], as given by:

C 3 f Fm cosO do

0 PDUm 2

• 2ir
2K Fm sine

2K do,' - :-7 m 3 2-
W 0 pDU0 m

Figures 4 and 5 show the drag and inertia coefficient, for a

smooth cylinder, as a function of K for 8 = 1035 and 8 =

1380. Similar data are shown in Figure 6 for a rough

cylinder (k/D = 1/100) for 0 = 1800. Also shown in

Figures 4 through 6 is the drag coefficient obtained

theoretically by Wang, Eq. (15).

Figures 4 and 5 show that Cd follows the theoretical

line for a K value smaller than a critical Kcr and then

increases almost abruptly to a higher value. Subsequently,

Cd decreases with increasing K and reaches a minimum at a K

, '. value of about 2. The variation of Cd with K for K > 5 has

been well documented in the literature [Ref. 3] and will not

be dealt with here further.

23



Figure 5 is similar to Figure 4 in many respects with

the addition of a hysteresis in the drag coefficient. For

very small values of K, Cd followed the Wang-line and then

rapidly jumped to a higher value. However, when the

experiments were carried out by decreasing K at suitable

intervals of K (with 15 minutes between each sampling), Cd

remained at its higher value and then rapidly jumped back to

the Wang-line at a K value smaller than that found in

experiments with increasing K. The reason for the observed

* hysteresis is not easy to explain and it may be due to the

precarious nature of the stability of the flow to the

prevailing disturbances. It is tempting to think that in

the experiments with decreasing K the level of the ambient

turbulence is higher and this forces Kcr to occur at a lower

K. In the future, it may be desirable to wait longer

periods of time between two successive changes of K.

Figure 6 does not show any region where Cd agrees with

Wang's prediction. In fact, from the lowest K obtainable in

the present experiments to the K at which Cd goes through a

minimum, Wang's prediction is considerably lower than that

obtained experimentally. One will have to postulate that

the flow has already become critical at K values smaller

than about 0.45 and one is observing only the post-critical

region of the drag coefficient.

Figures 4 through 6 show that the inertia coefficient

obtained experimentally agrees quite well with that given

24



by Wang for values of K smaller than Kcr* It is noted that

both the theoretical and experimental values of Cm are

slightly larger than 2 due to the effects of viscosity in

the boundary layer. It should also be noted that there is

very little or no scatter in the Cm data because the flow is

in the inertia dominated regime.

Figure 7 shows the RMS (root mean square) value of the

normalized in-line force as a function of K for all the

cylinders tested. The theoretical value of the said

coefficient is given by:

4 2
.3 2 Cm

Cf(rms) = Cd 2K2

which is seen to agree well with the data for K smaller than

about 8. This is due to the fact that the effect of Cd on

Cf(rms) is quite small and the value of Cf(rms) is dictated

by Cm.

The in-line force measurements and the resulting drag

and inertia coefficients have revealed certain heretofore

unknown facts which are both interesting and surprising.

Interesting in the sense that the flow exhibits numerous

transitions as K varies from about 0.4 to say 20.

Surprising in the sense that one would not have expected

transitions and hysteresis at relatively small K values

25
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particularly prior to the separation of flow which was

expected to occur at a K value in the vicinity of 1.0 - 2.0.

These two observations led to the flow visualization studies

noted earlier.

Figure 8 shows a sample photograph of the flow pattern

about an oscillating cylinder. Clearly, Taylor-Gbrtler

vortices form around the cylinder at regular intervals when

the amplitude of oscillation exceeds a particular value.

Figure 9 shows a plot of K versus B for smooth cylinders.

For K values smaller than a critical K and for a given B the

flow remains stable and attached. The symbol '0' denotes

the K value at which the Taylor-Gortler instability has

manifested itself. This instability gradually leads to

separation and turbulence as K is increased. The symbol 'X'

denotes the K values at which the flow has become turbulent

in the boundary layer beyond which no clear vortices were

observable.

It is in light of Figure 9 that one can interpret the

changes in Cd in Figures 4 through 6. For B = 1035 the

instability starts at Kcr = 1.05, according to Figure 9. In

Figure 4 the jump in Cd occurs at a slightly lower K.

Nevertheless, it is now clear that the rapid changes in Cd

in Figures 4 and 5 are a consequence of the instability

observed in the flow. It is also seen that the K value at

which the boundary layer becomes turbulent nearly

26
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corresponds to the K value at which the drag coefficient

goes through its minimum.

The foregoing discussion has not addressed itself to the

case of rough cylinders. Exploratory experiments with a

sand roughened oscillating cylinder have shown that the

effect of roughness is to reduce Kcr In fact, it was found

that Kcr 2 0.4 at B = 1800. Such a low K value was not

attainabile in the force measurements with the rough

cylinder due to a number of reasons, the most important

* being the noise level in the signal. Thus, it is safe to

assume that the flow for the rough cylinder has become

'. unstable at a K value at about 0.4 or less and led to the

rapid increase in Cd prior to the lowest shown in Figure 6.

In summary, it is now clear from the measurements and

observations that the theoretical predictions of Stokes and

Wang agree with the measurements as long as the flow is

lmainar, attached, and stable. As the flow becomes unstable

to Taylor-Gdrtler vortices, the drag coefficient is

drastically affected primarily due to changes in the shear

stress level and distribution over the cylinder. The next

important change in the flow and in the force coefficients

takes place when the flow separates and the boundary layer

becomes turbulent. The inception of separation nearly

..corresponds to the occurrence of minimum drag. Beyond that

• .the pressure drag becomes increasingly dominant and the

27



shear becomes negligible as K increases. Contrary to the

previous assumptions, that Cd varies from 0 to its maximum

value as K varies from 0 - 12, it is seen that there are

both interesting and important phenomena in the low

Keulegan-Carpenter number regime. The experiments described

here, however difficult they may have been due to the

problems associated with the measurements of very small

forces, have shed considerable light on the low K flow

regime.

-... 2
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V. CONCLUSIONS

The investigation reported herein warranted the

following conclusions:

1. The theoretical solutions of the oscillating flow
about a circular cylinder are valid only for attached,
stable, and laminar flow;

2. The flow becomes unstable to Taylor-Gartler vortices
at a critical Keulegan-Carpenter number for a given
ratio of the Reynolds number to the Keulegan-Carpenter
number, i.e., B;

3. The drag coefficient shows a rapid jump at or near the
critical Keulegan-Carpenter number. This is often
accompanied by hysteresis;

4. There is a second critical Keulegan-Carpenter number
at which the boundary layer separates and becomes
turbulent. This paricular value of K nearly
corresponds to the K value at which the minimum drag
occurs;

5. The theoretical value of the inertia coefficient
agrees with that determined experimentally only in the
attached, laminar, and stable flow regime; and

6. Roughness precipitates transition and increases the
drag coefficient. The effect of roughness on the
inertia coefficient in the stable flow regime is
negligible.
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? Figure . Coordinate Axis for an Oscillating 
Fat Pate
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